Derivation of 1D Kalman Filter with Covariance Discussion

System Model

We assume a scalar state evolving as:

$$x_k = x_{k-1} + w_k, \quad w_k \sim \mathcal{N}(0, Q)$$

and measurements:

$$z_k = x_k + v_k, \quad v_k \sim \mathcal{N}(0, R)$$

Here:

- Q: process noise variance
- R: measurement noise variance
- x_k : true state
- z_k : measurement

Goal

Estimate the posterior distribution:

$$p(x_k|z_1,z_2,\ldots,z_k)$$

given prior $p(x_{k-1}|z_1,...,z_{k-1})$.

Predict Step (Prior)

From the state model:

$$\hat{x}_{k|k-1} = \hat{x}_{k-1}, \qquad P_{k|k-1} = P_{k-1} + Q$$

Interpretation: $P_{k|k-1}$ is the variance of the estimation error before incorporating the new measurement. It grows by Q because process noise adds uncertainty.

Update Step (Posterior)

Measurement likelihood:

$$z_k|x_k \sim \mathcal{N}(x_k, R)$$

By Bayes' rule:

$$p(x_k|z_k) \propto p(z_k|x_k) p(x_k|z_{1:k-1})$$

Both are Gaussian:

$$\mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1}) \times \mathcal{N}(z_k; x_k, R)$$

The product of two Gaussians is another Gaussian with:

$$\hat{x}_k = \hat{x}_{k|k-1} + K_k(z_k - \hat{x}_{k|k-1})$$

$$P_k = (1 - K_k) P_{k|k-1}$$

where the Kalman gain is:

$$K_k = \frac{P_{k|k-1}}{P_{k|k-1} + R}$$

Discussion of P_k

- $P_k = \text{Var}(x_k \hat{x}_k)$: the posterior error variance after the update.
- Initially, P_0 is large (high uncertainty).
- After each measurement, P_k decreases because we gain confidence.
- If Q is large, uncertainty grows faster between updates.
- If R is large, measurements are unreliable, so P_k remains larger.

Summary of 1D Kalman Filter Equations

Predict:
$$\hat{x}_{k|k-1} = \hat{x}_{k-1}$$
, $P_{k|k-1} = P_{k-1} + Q$
Update: $K_k = \frac{P_{k|k-1}}{P_{k|k-1} + R}$
 $\hat{x}_k = \hat{x}_{k|k-1} + K_k(z_k - \hat{x}_{k|k-1})$
 $P_k = (1 - K_k)P_{k|k-1}$

Table 1: Advantages, Disadvantages, and Limitations of Kalman Filter

Advantages	Disadvantages	Limitations
Optimal estimation under	Assumes linear dynamics	Not robust to model errors
Gaussian noise		
Real-time recursive opera-	Requires accurate system	Cannot handle nonlineari-
tion	model	ties directly
Efficient sensor fusion	Sensitive to initialization	Computational complex-
		ity grows with state di-
		mension
Predictive capability for	Gaussian noise assump-	Requires full observability
missing data	tion	
Computationally efficient	Numerical stability issues	Performance degrades
for small systems	for large systems	with incorrect noise
		statistics
Provides uncertainty esti-	Divergence possible if	Limited to linear systems
mates (covariance)	model is wrong	without modifications